Technician License Course

Technician License Course Chapter 3 Lesson Plan Module - 5 Ohm's Law, Power and the Metric System

Ohm's Law

Ohm's Law

–Units – amperes (A) • R represents resistance

–Units – amperes (A) • R represents resistance $E = I \times R$

Practice Questions

What formula is used to calculate current in a circuit?

What formula is used to calculate current in a circuit?

Current (I) equals voltage (E) divided by resistance (R)

I = E / R

What formula is used to calculate voltage in a circuit?

What formula is used to calculate voltage in a circuit?

Voltage (E) equals current (I) multiplied by resistance (R)

 $\mathbf{E} = \mathbf{I} * \mathbf{R}$

What formula is used to calculate resistance in a circuit?

What formula is used to calculate resistance in a circuit?

Resistance (R) equals voltage (E) divided by current (I)

R = E / I

What is the resistance of a circuit in which a current of 3 amperes flows through a resistor connected to 90 volts?

What is the resistance of a circuit in which a current of 3 amperes flows through a resistor connected to 90 volts?

30 ohms

I = 3 amps E = 90VR = E / I $R = 90 / 3 = 30 \Omega$

What is the resistance in a circuit for which the applied voltage is 12 volts and the current flow is I.5 amperes?

What is the resistance in a circuit for which the applied voltage is 12 volts and the current flow is I.5 amperes?

8 ohms

E = 12VI = I.5 AR = E / I $R = 12 / 1.5 = 8 \Omega$

What is the resistance of a circuit that draws 4 amperes from a 12-volt source?

What is the resistance of a circuit that draws 4 amperes from a 12-volt source?

3 ohms

I = 4 A E = 12V R = E / I $R = 12 / 4 = 3 \Omega$

What is the current flow in a circuit with an applied voltage of 120 volts and a resistance of 80 ohms?

What is the current flow in a circuit with an applied voltage of 120 volts and a resistance of 80 ohms?

Ε

ARRI 0005

R

1.5 amperes

E = 120V $R = 80 \Omega$ I = E / R| = |20 / 80 = |.5 A|

What is the current flowing through a 100ohm resistor connected across 200 volts?

What is the current flowing through a 100ohm resistor connected across 200 volts?

Ε

ARRI 0005

R

2 amperes

 $R = 100 \Omega$ E = 200 VI = E / RI = 200 / I00 = 3 A

What is the current flowing through a 24-ohm resistor connected across 240 volts?

What is the current flowing through a 24-ohm resistor connected across 240 volts?

10 amperes

 $R = 24 \Omega$ E = 240 V I = E / RI = 240 / 24 = I0 A

What is the voltage across a 2-ohm resistor if a current of 0.5 amperes flows through it?

What is the voltage across a 2-ohm resistor if a current of 0.5 amperes flows through it?

l volt

What is the voltage across a 10-ohm resistor if a current of 1 ampere flows through it?

What is the voltage across a 10-ohm resistor if a current of 1 ampere flows through it?

10 volts

 $R = IO \Omega$ I = I A E = I * RE = I * IO = IOV

What is the voltage across a 10-ohm resistor if a current of 2 amperes flows through it?

What is the voltage across a 10-ohm resistor if a current of 2 amperes flows through it?

20 volts

 $R = 10 \Omega$ = 2 A $\mathbf{E} = \mathbf{I} * \mathbf{R}$ E = 2 * |0 = 20V

Power - Electrons Doing Work and Expending Energy

Power - Electrons Doing Work and Expending Energy

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.
- Power is the rate at which energy is consumed.
- Power is measured in units of watts (W).

Power Equation

Ρ

_

Power is calculated as the product of voltage and current

Power Equation

 Power is calculated as the product of voltage and current $P = E \times I$

E = P / I

I = P / E

 Like Ohm's Law, if you know two of the values, you can calculate the third.

Practice Questions

Electrical power is measured in what units?

Electrical power is measured in what units?

What term describes the rate at which electrical energy is used?

What term describes the rate at which electrical energy is used?

What is the formula used to calculate electrical power in a DC circuit?

What is the formula used to calculate electrical power in a DC circuit?

Power (P) equals voltage (E) multiplied by current (I)

E

 $\mathbf{P} = \mathbf{I} * \mathbf{E}$

How much power is being used in a circuit when the applied voltage is 13.8 volts DC and the current is 10 amperes?

How much power is being used in a circuit when the applied voltage is 13.8 volts DC and the current is 10 amperes?

138 watts

| = | 0 AE = 13.8VP = I * EP = 10 * 13.8 = 138 W

How much power is being used in a circuit when the applied voltage is 12 volts DC and the current is 2.5 amperes?

How much power is being used in a circuit when the applied voltage is 12 volts DC and the current is 2.5 amperes?

Ε

30 watts

I = 2.5 AE = 12V $\mathsf{P} = | * \mathsf{E}$ P = 2.5 * 12 = 30 W

How many amperes are flowing in a circuit when the applied voltage is 12 volts DC and the load is 120 watts?

How many amperes are flowing in a circuit when the applied voltage is 12 volts DC and the load is 120 watts?

Ε

10 amperes

E = 12VP = 120 WI = P/E| = |20 / |2 = |0A|

Metric Prefixes

Table 2-1				
International System of Units (SI)—Metric Units				
Prefix	Symbol	Multiplication Factor		
Tera	Т	$10^{12} = 1,000,000,000,000$		
Giga	G	$10^9 = 1,000,000,000$		
Mega	Μ	$10^6 = 1,000,000$		
Kilo	k	$10^3 = 1000$		
Hecto	h	$10^2 = 100$		
Deca	da	$10^1 = 10$		
Deci	d	$10^{-1} = 0.1$		
Centi	С	$10^{-2} = 0.01$		
Milli	m	$10^{-3} = 0.001$		
Micro	μ	$10^{-6} = 0.000001$		
Nano	n	$10^{-9} = 0.00000001$		
Pico	р	$10^{-12} = 0.00000000001$		

Electrical Units

Electrical Units and Their Namesakes

Unit Measures Ampere Current Coulomb Charge Farad Inductance Henry Hertz Frequency Ohm Resistance Watt Power Volt Voltage

Named for Andree Marie Ampere (1775 – 1836) Charles Augustin Coulomb (1736 – 1806) Capacitance Michael Faraday (1791 - 1867) Joseph Henry (1797 – 1878) Heinrich Hertz (1857 - 1894) George Simon Ohm (1787 - 1854) James Watt (1736 - 1819) Alessandro Giuseppe Antonio Anastasio Volta (1745 - 1827)

Practice Questions

How many milliamperes is 1.5 amperes?

How many milliamperes is 1.5 amperes?

1,500 milliamperes

| = 1.5 A| A = 1000 mA | = 1.5 A * 1000 mA/1A = 1500 mA

Table 2-1			
International System of Units (SI)—Metric Units			
Prefix	Symbol	Multiplication Factor	
Tera	Т	$10^{12} = 1,000,000,000,000$	
Giga	G	$10^9 = 1,000,000,000$	
Mega	Μ	$10^6 = 1,000,000$	
Kilo	k	$10^3 = 1000$	
Hecto	h	$10^2 = 100$	
Deca	da	10 ¹ = 10	
Deci	d	$10^{-1} = 0.1$	
Centi	С	$10^{-2} = 0.01$	
Milli	m	10 ⁻³ = 0.001	
Micro	μ	$10^{-6} = 0.000001$	
Nano	n	$10^{-9} = 0.00000001$	
Pico	р	$10^{-12} = 0.00000000001$	

Specify a radio signal frequency of 1,500,000 hertz in kHz?

Specify a radio signal frequency of 1,500,000 hertz in kHz?

1500 kHz

f = 1500000 Hz| kHz = | 000 Hz |f = 1500000 Hz * 1 kHz/1000 Hz = 1500 kHz

Table 2-1				
International System of Units (SI)—Metric Units				
Prefix	Symbol	Multiplication Factor		
Tera	Т	$10^{12} = 1,000,000,000,000$		
Giga	G	$10^9 = 1,000,000,000$		
Mega	М	$10^6 = 1,000,000$		
Kilo	k	$10^3 = 1000$		
Hecto	h	$10^2 = 100$		
Deca	da	10 ¹ = 10		
Deci	d	$10^{-1} = 0.1$		
Centi	С	$10^{-2} = 0.01$		
Milli	m	10 ⁻³ = 0.001		
Micro	μ	$10^{-6} = 0.000001$		
Nano	n	$10^{-9} = 0.00000001$		
Pico	р	$10^{-12} = 0.00000000001$		

How many volts are equal to one kilovolt?

How many volts are equal to one kilovolt?

Table 2-1 Internatio Prefix	nal System of Symbol	Units (SI)—Metric Units Multiplication Factor
Tera	Т	$10^{12} = 1,000,000,000,000$
Giga	G	$10^9 = 1,000,000,000$
Mega	Μ	$10^6 = 1,000,000$
Kilo	k	$10^3 = 1000$
Hecto	h	$10^2 = 100$
Deca	da	10 ¹ = 10
Deci	d	$10^{-1} = 0.1$
Centi	С	$10^{-2} = 0.01$
Milli	m	10 ⁻³ = 0.001
Micro	μ	$10^{-6} = 0.000001$
Nano	n	$10^{-9} = 0.00000001$
Pico	р	$10^{-12} = 0.00000000001$

One thousand volts

E = | kV| kV = |000V E = | kV * |000V / | kV = |000V

How many volts are equal to one microvolt?

How many volts are equal to one microvolt?

One one-millionth of a volt

Table 2-1			
International System of Units (SI)—Metric Units			
Prefix	Symbol	Multiplication Factor	
Tera	Т	$10^{12} = 1,000,000,000,000$	
Giga	G	$10^9 = 1,000,000,000$	
Mega	Μ	$10^6 = 1,000,000$	
Kilo	k	$10^3 = 1000$	
Hecto	h	$10^2 = 100$	
Deca	da	10 ¹ = 10	
Deci	d	$10^{-1} = 0.1$	
Centi	С	$10^{-2} = 0.01$	
Milli	m	10 ⁻³ = 0.001	
Micro	μ	$10^{-6} = 0.000001$	
Nano	n	$10^{-9} = 0.00000001$	
Pico	р	$10^{-12} = 0.00000000001$	

E = IV $I \mu V = IV / I,000,000$ E = one-millionth V If an ammeter calibrated in amperes is used to measure a 3000-milliampere current, what reading would it show?

If an ammeter calibrated in amperes is used to measure a 3000-milliampere current, what reading would it show?

Table 2-1

Symbo

Prefix

Fera

Gida

Kilo

Hecto

Deca

Deci Centi

Micro

Pico

International System of Units (SI)—Metric Units

Multiplication Factor

 $10^9 = 1.000.000.000$ $10^6 = 1\ 000\ 00$

 $10^3 = 1000$

 $10^2 = 100$ $10^1 = 10$

 $10^{-1} = 0.1$

 $10^{-2} = 0.01$ $10^{-3} = 0.00$

 $10^{-6} = 0.00000^{-6}$

 $10^{-12} = 0.00000000001$

 $10^{12} = 1,000,000,000,000$

3 amperes

I = 3000 mA1000 mA = 1 AI = 3000 mA * I A / 1000 mA = 3 A

If a frequency readout calibrated in megahertz shows a reading of 3.525 MHz, what would it show if it were calibrated in kilohertz?

If a frequency readout calibrated in megahertz shows a reading of 3.525 MHz, what would it show if it were calibrated in kilohertz?

3525 kHz

f = 3.525 MHz I MHz = I000 kHzf = 3.525 MHz * 1000 kHz / 1 MHz = 3525 kHz

International System of Units (SI)—Metric Unit				
Prefix	Symbol	Multiplication Factor		
Tera	Т	$10^{12} = 1,000,000,000,000$		
Giga	G	$10^9 = 1,000,000,000$		
Mega	Μ	$10^6 = 1,000,000$		
Kilo	k	$10^3 = 1000$		
Hecto	h	$10^2 = 100$		
Deca	da	10 ¹ = 10		
Deci	d	$10^{-1} = 0.1$		
Centi	С	$10^{-2} = 0.01$		
Milli	m	10 ⁻³ = 0.001		
Micro	μ	$10^{-6} = 0.000001$		
Nano	n	$10^{-9} = 0.00000001$		
Pico	р	$10^{-12} = 0.00000000001$		

Table 2-1

How many microfarads are 1,000,000 picofarads?

OW	many	micro	farac	s are	1,000
		pico	farac	s?	

I microfarad

Table 2-1 International System of Units (SI)—Metric Units				
Prefix	Symbol	Multiplication Factor		
Tera	Т	$10^{12} = 1,000,000,000,000$		
Giga	G	$10^9 = 1,000,000,000$		
Mega	Μ	$10^6 = 1,000,000$		
Kilo	k	$10^3 = 1000$		
Hecto	h	$10^2 = 100$		
Deca	da	10 ¹ = 10		
Deci	d	10 ⁻¹ = 0.1		
Centi	С	$10^{-2} = 0.01$		
Milli	m	10 ⁻³ = 0.001		
Micro	μ	$10^{-6} = 0.000001$		
Nano	n	$10^{-9} = 0.00000001$		
Pico	р	$10^{-12} = 0.00000000001$		

C = 1,000,000 pF $I \mu F = I,000,000 \rho F$ $C = I,000,000 \text{ pF} * I \mu F/I,000,000 \text{ pF} = I \mu F$

,000

If a frequency readout shows a reading of 2425 MHz, what frequency is that in GHz?

If a frequency readout shows a reading of 2425 MHz, what frequency is that in GHz?

2.425 GHz

Table 2-1

Symbo

Prefix

Tera

Gida

Kilo

Hecto

Deca

Deci

Centi

Micro

Pico

International System of Units (SI)—Metric Units

Multiplication Facto

 $10^9 = 1,000,000,00$ $10^6 = 1,000,000$

 $10^3 = 1000$

 $10^2 = 100$

 $10^1 = 10$

 $10^{-1} = 0.1$

 $10^{-2} = 0.01$ $10^{-3} = 0.00$

 $10^{-6} = 0.00000$

 $10^{-12} = 0.00000000001$

 $10^{12} = 1,000,000,000,000,000$

f = 2425 MHz I GHz = 1000 MHz f = 2425 MHz * IGHz/1000MHz = 2.425 GHz

End of Module 5